SHORT COMMUNICATION

PROGRAMME FOR DRAWING LINE GRAPHS ON IBM PERSONAL COMPUTERS

N. ANANDHKUMAR AND A. NAMASIVAYAM*

Department of Physiology,
Dr. A.L.M. PG. Institute of Basic Medical Sciences, University of Madras, Taramani, Madras - 600113

Abstract

A simple program for drawing line graphs on IBM Personal Computers is described here. This program is written in Basic language and is user friendly. This program allows the operator to plot the line graphs with standard error of each of the observations. After plotting suitable legend can also be added at appropriate places in the graph. In the graphic mode a hard copy can be obtained from a dot matrix printer using print screen command.

Key words: basic program for line graphs
commercial software packages have this facility, only few, plot the standard deviation/error in the graph. Keeping this in mind a user friendly program was developed in this department and has been used successfully for the past four years.

The listing of the program is given below :
10 'LINE GRAPH BY N. ANANDH KUMAR \& A. NAMASIVAYAM 21.10.88'

11 'DEVELOPED IN THE DEPARTMENT OF PHYSIOLOGY, DR. ALM. PGIBMS'
'UNIVERSITY OF MADRAS, TARAMANI, MADRAS-600 113, INDIA'
KEY OFF : SCREEN 2 : CLS
PRINT "-.-. LINE-GRAPH-.."
INPUT" NO. OF DIVISIONS OF Y-AXIS"; YD

50 INPUT" STARTING VALUE OF Y-AXIS"; YS
Line graphs are one of the commonest methods by which scientific data is presented both in publications and during conferences. We have developed a simple computer program to do this job more efficiently \& conveniently than manual methods. Although several
line graphs on IBM PC

60
70

200
INPUT" ENDING VALUE OF Y-AXIS"; YE PRINT
INPUT" NO. OF DIVISIONS OF X-AXIS"; XD

INPUT" STARTING VALUE OF OF X-AXIS"; XS
100 INPUT" ENDING VALUE OF X-AXIS"; XE

PRINT

INPUT "NO. OF POINTS"; NP
INPUT "NO. OF GRAPHS"; NG
CLS: SCREEN 2
LINE $(60,170)-(580,170)$
LINE $(60,170)-(60,20)$
$\mathrm{YZ}=150 / \mathrm{YD}: \mathrm{XZ}=520 / \mathrm{XD}$
FOR A $=170$ TO 20 STEP -YZ
LINE (60, A) - (54, A) : NEXT
FOR A $=60$ TO 580 STEP - XZ
LINE (A, 170) - (A, 174) : NEXT
$\mathrm{XM}=\mathrm{XE}-\mathrm{XS}: \mathrm{YM}=\mathrm{YE}-\mathrm{YS}$
$\mathrm{YN}=150 / \mathrm{YM}: \mathrm{XN}=520 / \mathrm{XM}$
FOR G $=1$ TO NG

[^0]BEEP : LOCATE 1,1 : PRINT" GRAPH"; G
$X X=0: Y Y=0: A S=0$
FOR I $=1 \mathrm{TO} \mathrm{NP}$
LOCATE 2, 1 : PRINT SPACE\$ (80)
LOCATE 2, 1 : INPUT "X, Y, SE"; X, Y, SE
$\mathrm{QW}=\mathrm{X}^{*} \mathrm{XN}: \mathrm{RT}=\mathrm{Y}^{*} \mathrm{YN}$
$\mathrm{ER}=\mathrm{SE} * \mathrm{YN}: \mathrm{TR}=170-\mathrm{RT}: \mathrm{WQ}=60$ + QW

AS $=\mathrm{AS}+1: \mathrm{IF}$ AS $=1$ THEN 340
LINE (XX, YY) - WQ, TR)
$X X=W Q: Y Y=T R$
LINE (WQ, TR - ER) - (WQ, TR + ER)
LINE (WQ - 2, TR - ER) - (WQ + 2, TR ER)
LINE (WQ - 2, TR + ER $)-(W Q+2, T R+$ ER)
NEXT I
NEXT G
The program is used as follows : If you have a PC-XT load the program in the hard disk in Basica Directory and save with a name (Linegraph). If you have only a PC with two floppy drives, start the computer with DOS, load graphics in to memory, then load basica, and then load the program. Save the same with a name.

To use the program, go to Graphics mode from DOS, then load the program and run the same. The program will ask a series of questions to scale Y axis and X axis, followed by questions on number of points
to be plotted and number of graphs to be plotted. Once these questions are answered, the computer will show the X \& Y axes in the monitor and will ask you to input the data to be plotted. Give the X, Y \& SE values with comma in between. As you are inputting the data, the computer will draw the appropriate lines which can be seen in the monitor. When all the data has been loaded and the required graph is completed OK will appear on the screen. Once OK sign has appeared, move the cursor over the displayed test lines and erase them out using "Del" key. After the unnecessary lines are removed from the screen you are free to move the cursor to the appropriate locations in the screen type the caption, X \& Y axes parameters and other relevant information.

When the graph is ready for printing, move the cursor to one corner of the screen and use print screen command (shift key \& PRISC key pressed together) to get a hard copy from a dot matrix printer. An example of the graph plotted using the above program is shown in Fig. 1.

Fig. 1

[^0]: *Corresponding Author

